Development of a y-ray Spectroscopy System Using CsI(TI)-PIN Diode Detector for Educational Purpose

9 November 2009

Y.M. NAM, B.J. MIN, H.S. KIM and J.H. HA

Contents

- About NTC/KAERI
- > Background
- ➤ Design of a y-ray Spectroscopy Tool Kit Using CsI(TI)/PIN Diode Detector
- Fabrication of the Prototype
- > Performance
- Conclusions

About NTC/KAERI

□Missions

- **→** Development of nuclear human resources in Korea
- → International cooperation in nuclear education and training

About NTC/KAERI

☐ Organization and Programs

Nuclear Training & Education Center

Education Management Team

International Education Team

Education Programs for Staff members

- Management courses

Training
Programs for
Industry
Personnel

- Nuclear Power
- Radiation
- NDT

Education
Programs for
University
Students

- Research Reactor Exp.
- Lab. OJT

A Training Programsfor Foreign Participants

- IAEA/KOICA/RCARO
- Bilateral
- UST-KAERI (MS/PhD)
- WNU
- ANENT

About NTC/KAERI

→ 3 Nal spectroscopy systems

→ 2 HPGe spectroscopy systems

Background

- □ Hands-on experiments involving radiation at schools would be an effective way to enhance the understanding and perception for students
- □ Conventional NIM modules for y-ray spectroscopy have some drawbacks for student experiments
 - Systems are not cheap nor simple
 - They are generally fragile and require a high voltage or cooling system
 - **→** For safety concerns, they should be operated by professionals
- □ A simpler and cheaper γ-ray spectroscopy system would be an effective equipment to educate students in radiation fields
- We at KAERI developed a simple γ-ray spectroscopy tool kit that can be readily deployed for the above mentioned aspirations

CsI(TI)/PIN Diode Detector

☐ Csl(Tl) scintillator

→ Size: 10mm(W)×10mm(L)×20(H)mm

→ Density: 4.51g/cm²

Hardness: 2Mohs

Emission spectrum: 550 nm

→ Model: Hamamatsu 3590-08

→ Size: 10 mm²

→ Absorption spectrum of Si:~ 550 nm

□ CsI(TI)/PIN diode detector

 Using optical grease and PTFE tapes, Csl(TI) scintillator and PIN diode are assembled into Csl(TI)/PIN diode detector

Csl(TI) Sintillators

Design of a Spectroscopy Tool Kit (1)

Owing to the use of PIN diode, it was able to mount the whole system in a small aluminum chassis

Design of a Spectroscopy Tool Kit (2)

□ Comparison between a conventional system and the developed spectroscopy tool kit

Design of a Spectroscopy Tool Kit (3)

□Layout of the simple \forall -ray spectroscopy tool kit

- → The system consists of a CsI(TI)/PIN diode detector, integrated electronics and a multi-channel-analyzer
- → The tool kit is rugged, quite compact and portable

Fabrication of the prototype(1)

□ Exterior view of the prototype

- → Size: 40 cm (W) X 20 cm (L) X 6 cm (H)
- Module components are shown on the top lid
- → Double lids are used to reduce noise, the top lid slides easily
- → Rectangular opening on the left is for replacement of the source/sample

Fabrication of the prototype(2)

□Interior view of the prototype

- → BNC Connectors for test, preamp. and amp.: check pulse shape from preamplifier and amplifier
- **→ USB port used for connection with a laptop**

Fabrication of the prototype(3)

□Spectrum display via a laptop

Performance (1)

□Background spectrum without source

Performance (2)

□ ¹³⁷Cs and ⁶⁰Co energy spectra

Resolution for ¹³⁷Cs 660 keV: 7.9%

Resolution for ⁶⁰Co 1,332 keV: 4.9%

Sufficient to accumulate a quality spectrum in a few minutes using week and encapsulated sources

KAERI

NTC / KAERI 15

Performance (3)

□Energy dependence

- → ⁵⁷Co: 122 keV, ¹³⁷Cs: 660 keV ⁶⁰Co: 1170 keV, 1330 keV

Performance (4)

□ Energy spectrum of a pottery piece

measured with the spectroscopy tool kit (20 minutes counting)

Apparently, there are significant amounts of heavy metals in the pottery piece

Conclusions (1)

- □ The y-ray spectroscopy tool kit that is cheap and simple compared with conventional spectroscopy system has been developed, fabricated and tested.
- The developed spectroscopy tool kit is safe to operate, inexpensive to procure, and very portable for educational purposes at secondary school level and beyond.
- □ Results measured from the prototype show that its resolution and efficiency are good, making it quite suitable for such as
 - ambient background radiation observation
 - monitoring intensities of selected radioactivity
 - demonstration experiments at secondary schools and up

18

NTC / KAERI

Conclusions (2)

- □ The tool kit can replace Geiger-Muller counters in many traditional basic experiments with the pulse height analysis capability.
- □ The tool kit can be widely adopted for education and even for more sophisticated and higher level investigations.

